

**Proceedings of the joint 18th International Green Energy Conference (IGEC-XVIII)
& the 7th International Conference on Energy and AI (ICEAI-VII)**
IGEC2026-XXX
May 3-7, 2026, Abu Dhabi, UAE

**THE TITLE: MANUSCRIPT PREPARATION FOR IGEC-XVIII PAPERS, 6-10 PAGES
(FONT ARIAL, SIZE 11, BOLD)**

First Author¹, Second Author² and Third Author¹

¹ Department of Mechanical Engineering, University Name, City, Country

² Institute of Energy, City, Country

E-mail: corresponding.author@email.com

ABSTRACT

This is a template for author(s) to use for preparing their manuscript for IGEC-XVIII. The IGEC-XVIII Proceedings will be produced directly from the electronic files you provide. Please prepare your paper following the guidelines given below and submit via <https://www.iage-net.org/igec2026-submission>. Make sure that your paper is free of technical, grammatical, and typographical errors.

Keywords: IGEC, conference template, guideline.

INTRODUCTION

Prepare your paper in full-size format on US letter size paper (8.5 by 11 inches or 215.9 by 279.4 mm). Each paper, including figures and tables, typically varies from **6 to 10 pages**. Papers should be typed as a single-columned, single-spacing text with the following margins:

LETTER SIZE

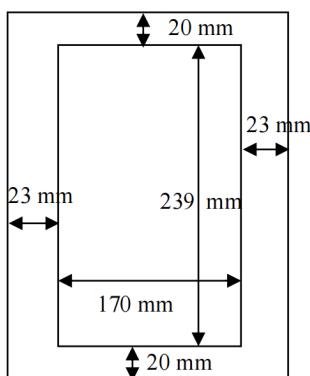


Figure 1. Sketch of the sample.

ORGANIZATION

A short abstract of 500 words maximum should state briefly the content, methods, main results and conclusions of the study reported in the paper.

Structure of Paper

Papers should follow the following structure: Title, Name(s) of author(s) and affiliation, Abstract, Keywords, Main Text, Conclusions, Acknowledgements (if appropriate), Nomenclature, References, Appendices (if appropriate).

Heading Categories

TITLE (11pt bold uppercase)

MAIN SECTIONS (9.5pt bold uppercase)

Sub-headings (9.5pt bold).

Units and Equations

Use SI units only. Equations should be typed and numbered. In the text, an equation should be referred to as Eq. (1).

$$\theta = \frac{T - T_a}{T_i - T_a} \quad (1)$$

Where T is temperature, and subscripts a and i refer to ambient and initial conditions, respectively.

Tables, Figures and Photographs

Briefly and descriptively title each table and caption each figure. Place table titles above the table (Table 1) and figure captions below the figure (Fig. 2).

Table 1. Experimental data of the product.

Product	Cucumber	Apple
Shape	Cylinder	Sphere
Fluid	Water	Air
Flow velocity (m/s)	0.05	6.6

Figure Placeholder

Figure 2. Sketch of the sample configuration.

References should be cited in the text by author and yearKreith and Kreider (1978). For example, previous studies on green energy systems have been conducted by Dahlquist et al. (2006). Other concepts regarding process design are discussed in literature (Abdu-Khader and Speight, 2004). The bibliography will be automatically sorted alphabetically.

RESULTS AND DISCUSSION

All the results obtained should be discussed in detailChianelli et al. (1994). The discussion section should interpret the findings outlined in the results section.

CONCLUSIONS

State the main findings (main results and conclusions of the study reported in the paper) within one paragraph of no more than half a page longige.

ACKNOWLEDGEMENT

Acknowledgement comes here. This section is generally unnumbered and allows authors to thank funding agencies or individualsAl-Tameemi (2019).

NOMENCLATURE

A	area, m^2
c_p	specific heat, $\text{J/kg}^\circ\text{C}$
h	heat transfer coefficient, $\text{W/m}^2 \circ\text{C}$

Greek Letters

ρ	density, kg/m^3
θ	dimensionless temperature

Subscripts

a	ambient
i	initial

Superscripts

*	reference condition
---	---------------------

REFERENCES

IGEC-XVIII. <https://www.iage-net.org/igec2026>. (Accessed on: 21/05/2024).

M. M. Abdu-Khader and J. G. Speight. The concepts of energy, environment, and cost for process design. *International Journal of Green Energy*, 1(1):137–151, 2004.

M. R. J. Al-Tameemi. *Thermal analysis of combined Organic Rankine-Vapour compression system for heating and cooling applications*. PhD thesis, University of Glasgow, 2019.

R. R. Chianelli, M. Daage, and M. J. Ledoux. Fundamental studies of transition-metal sulfide catalytic materials. In D. D. Eley, H. Pines, and W. O. Haag, editors, *Advances in Catalysis*, volume 40. Academic Press, Burlington, Mass., 1994.

E. Dahlquist, E. Thorin, and J. Yan. Alternative Pathways to a Fossil-Fuel Free Energy System in the Mälardalen Region of Sweden. In *Proceedings of the International Green Energy Conference II*, Oshawa, Ontario, Canada, June 2006.

F. Kreith and J. Kreider. *Principles of Solar Engineering*. Hemisphere-McGraw-Hill, New York, 1978.